Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows∗
نویسندگان
چکیده
We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.
منابع مشابه
Numerical Simulation of Mixed Convection Flows in a Square Double Lid-Driven Cavity Partially Heated Using Nanofluid
A numerical study has been done through an Al2O3–water in a double lid-driven square cavity with various inclination angles and discrete heat sources. The top and right moving walls are at low temperature. Half of the left and bottom walls are insulated and the temperatures of the other half are kept at high. A large number of simulations for a wide range of Richardson number ...
متن کاملUsing Burnett Equations to Derive an Analytical Solution to Pressure-Driven Gas Flow and Heat Transfer in Micro-Couette Flow
The aim of the present study is deriving an analytical solution to incompressible thermal flow in a micro-Couette geometry in the presence of a pressure gradient using Burnett equations with first- and second-order slip boundary conditions. The lower plate of the micro-Couette structure is stationary, whereas the upper plate moves at a constant velocity. Non-dimensional axial velocity and tempe...
متن کاملNumerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter
Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...
متن کاملMixed Convection of Variable Properties Al2O3-EG-Water Nanofluid in a Two-Dimensional Lid-Driven Enclosure
In this paper, mixed convection of Al2O3-EG-Water nanofluid in a square lid-driven enclosure is investigated numerically. The focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. The top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperature...
متن کاملEffect of Insulated Up and Down Lid Motion on the Heat Transfer of a Lid-Driven Cavity with an attached fin
This study investigates the effect of lid motion on the optimal characteristics a thin rectangular fin attached on the hot wall of a square lid-driven cavity with active vertical walls. The optimal fin position is studied for Richardson numbers of 0.1-10. The effect of mounting a rectangular fin with a thermal conductivity of 1 and 1000 on minimization and maximization of heat transfer through ...
متن کامل